Forecasting, filtering, and reconstruction of stochastic stationary signals using discrete-time reservoir computers
نویسندگان
چکیده
This paper extends the notion of information processing capacity for non-independent input signals in the context of reservoir computing (RC). The presence of input autocorrelation makes worthwhile the treatment of forecasting and filtering problems for which we explicitly compute this generalized capacity as a function of the reservoir parameter values using a streamlined model. The reservoir model leading to these developments is used to show that, whenever that approximation is valid, this computational paradigm satisfies the so called separation and fading memory properties that are usually associated with good information processing performances. We show that several standard memory, forecasting, and filtering problems that appear in the parametric stochastic time series context can be readily formulated and tackled via RC which, as we show, significantly outperforms standard techniques in some instances.
منابع مشابه
Stochastic nonlinear time series forecasting using time-delay reservoir computers: Performance and universality
Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملStochastic Synthesis of Drouths for Reservoir Storage Design (RESEARCH NOTE).
Time series techniques are applied to Ghara-Aghaj flow records, in order to generate forecast values of the mean monthly river flows. The study of data and its correlogram shows the effect of seasonality and provide no evidence of trend. The autoregressive models of order one and two (AR1, AR2), moving average model of order one and ARMA (1,1) model are fitted to the stationary series, where th...
متن کاملHybrid Wavelet and Chaos Theory for Runoff Forecasting
-This paper introduced a method of decomposing non-stationary runoff time series. By wavelet decomposing, the runoff time series is decomposed into stationary time series and stochastic time series, and AR(n) model be imposed for forecasting stationary time series. By studying chaos characteristic of stochastic time series, this paper put forward a nonlinear chaos dynamics-forecasting model to ...
متن کاملA combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations
Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1508.00144 شماره
صفحات -
تاریخ انتشار 2015